896 Chapter 20.  Less-Numerical Algorithms

20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically
ASCII characters or bytes) and translata®iersibly into another string, one that is
ontheaverageof shorter length. The words “on the average” are crucial; it is obvious
that no reversible algorithm can make all strings shorter — there just aren’'t enoughg
short strings to be in one-to-one correspondence with longer strings. Compressm
algorithms are possible only when, on the input side, some strings, or some inpu
symbols, are more common than others. These can then be encoded in fewer bi
than rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departures from equiprobability in input strings.
In this section and the next we shall consider omlsiable length codes with defined
word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman codifig, discussed in this section. Another
example,arithmetic compression, is discussed i320.5.

At the opposite extreme from defined-word, variable length codes are scheme
that divide up thénput into units of variable length (words or phrases of English text,
for example) and then transmit these, often with a fixed-length output code. The mos
widely used code of this type is the Ziv-Lempel cdde Referencefs-6] give the
flavor of some other compression techniques, with references to the large literatureo

The idea behind Huffman coding is simply to use shorter bit patterns for more 8
common characters. We can make this idea quantitative by considering the conce®
of entropy. Suppose the input alphabet h&s;, characters, and that these occur in
the input string with respective probabilitis, i = 1,..., N¢, so thatd_p; = 1.

Then the fundamental theorem of information theory says that strings consisting ofz
independently random sequences of these characters (a conservative, but not alwa
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realistic assumption) require, on the average, at least g§
< =

o

H==3 pilogyp: (20.4.3 fg;

bits per character. HerH is the entropy of the probability distribution. Moreover, §'§'
coding schemes exist which approach the bound arbitrarily closely. For the case of g
equiprobable characters, with al] = 1/N,,, one easily sees th&l = log, N.x, %%
which is the case of no compression at all. Any other set & gives a smaller Ei
entropy, allowing some useful compression. i%
Notice that the bound of (20.4.1) would be achieved if we could encode character% g

¢ with a code of lengthl.; = —log, p; bits: Equation (20.4.1) would then be the 5‘3_
averaged  p;L;. The trouble with such a scheme is thatog, p; is not generally gz
an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes &
7

a stab at this by, in effect, approximating all the probabilifiedy integer powers
of 1/2, so that all the;’s are integral. If all thep;’s are in fact of this form, then
a Huffman code does achieve the entropy boi#hd

The construction of a Huffman code is best illustrated by example. Imagine
a language, Vowellish, with thé/.;,, = 5 character alphabet A, E, I, O, and U,
occurring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish is accomplished in the following table:
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Node| Stage: 1 2 3 4 5
1 A 0.12 0.1
2 E: 0.42 0.42 0.42 0.4m
3 I: 0.09:
4 0.30 0.30 0.3m
5 u 0.07nm
6 ul: 0.16m
7 AUI: 0.281
8 AUIO: 0.58m
9

EAUIO: 1.00

Here is how it works, proceeding in sequence throngh stages, represented
by the columns of the table. The first stage starts viNth, nodes, one for each
letter of the alphabet, containing their respective relative frequencies. At each stag
the two smallest probabilities are found, summed to make a new node, and th
dropped from the list of active nodes. (A “block” denotes the stage where a node i
dropped.) All active nodes (including the new composite) are then carried over t
the next stage (column). In the table, the names assigned to new nodes (e.g., Al
are inconsequential. In the example shown, it happens that (after stage 1) the twg
smallest nodes are always an original node and a composite one; this need not
true in general: The two smallest probabilities might be both original nodes, or both3
composites, or one of each. At the last stage, all nodes will have been collected int
one grand composite of total probability 1.

Now, to see the code, you redraw the data in the above table as a tree (Figur
20.4.1). As shown, each node of the tree corresponds to a node (row) in the tabl
indicated by the integer to its left and probability value to its right. Terminal nodes,
so called, are shown as circles; these are single alphabetic characters. The branc
of the tree are labeled 0 and 1. The code for a character is the sequence of zeros af
ones that lead to it, from the top down. For example, E is simply 0, while U is 1010.

Any string of zeros and ones can now be decoded into an alphabetic sequenc
Consider, for example, the string 1011111010. Starting at the top of the tree we
descend through 1011 to I, the first character. Since we have reached a termin
node, we reset to the top of the tree, next descending through 11 to O. Finally 101
gives U. The string thus decodes to IOU.

These ideas are embodied in the following routines. Input to the first routine
hufmak is an integer vector of the frequency of occurrence ofdhein = N,
alphabetic characters, i.e., a set of integers proportional tp the hufmak, along
with hufapp, which it calls, performs the construction of the above table, and also the
tree of Figure 20.4.1. The routine utilizes a heap structure§®e3 for efficiency;
for a detailed description, see Sedgewitk
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898 Chapter 20.  Less-Numerical Algorithms

Figure 20.4.1. Huffman code for the fictitious language Vowellish, in tree form. A letter (A, E, |,
0, or U) is encoded or decoded by traversing the tree from the top down; the code is the sequence
0's and 1's on the branches. The value to the right of each node is its probability; to the left, its nod
number in the accompanying table.
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SUBROUTINE hufmak(nfreq,nchin,ilong,nlong)
INTEGER ilong,nchin,nlong,nfreq(nchin),MC,MQ
PARAMETER (MC=512,MQ=2%MC-1)
USES huf app
Given the frequency of occurrence table nfreq(1:nchin) of nchin characters, construct
in the common block /hufcom/ the Huffman code. Returned values ilong and nlong
are the character number that produced the longest code symbol, and the length of that
symbol. You should check that nlong is not larger than your machine’s word length.
INTEGER ibit,j,k,n,nch,node,nodemx,nused,ibset,index(MQ),
iup(MQ) ,icod(MQ) ,left (MQ) ,iright (MQ) ,ncod(MQ) ,nprob(MQ)
COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
nch=nchin Initialization.
nused=0
do11 j=1,nch
nprob(j)=nfreq(j)
icod(j)=0
ncod(j)=0
if (nfreq(j) .ne.0)then
nused=nused+1
index (nused)=j
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endif
enddo 11
do 12 j=nused,1,-1 Sort nprob into a heap structure in index.
call hufapp(index,nprob,nused,j)
enddo 12
k=nch
if (nused.gt.1)then Combine heap nodes, remaking the heap at each stage.

node=index (1)
index(1)=index (nused)
nused=nused-1
call hufapp(index,nprob,nused,1)
k=k+1
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nprob (k) =nprob(index (1) ) +nprob(node)

left(k)=node
iright (k)=index (1)
iup(index(1)) = -k

Store left and right children of a node.

Indicate whether a node is a left or right child of its parent.

iup(node)=k
index(1)=k

call hufapp(index,nprob,nused,1)

goto 1

endif
nodemx=k

iup (nodemx)=0

do 13 j=1,nch Make the Huffman code from the tree.

if (nprob(j) .ne.0)then
n=0
ibit=0
node=iup(j)
if (node.ne.0)then
if (node.1lt.0)then
n=ibset(n,ibit)
node = -node
endif
node=iup(node)
ibit=ibit+1
goto 2
endif
icod(j)=n
ncod(j)=ibit
endif
enddo 13
nlong=0
do 14 j=1,nch
if (ncod(j) .gt.nlong)then
nlong=ncod(j)
ilong=j-1
endif
enddo 14
return
END

SUBROUTINE hufapp(index,nprob,m,1)
INTEGER m,1,MC,MQ

PARAMETER (MC=512,MQ=2*MC-1)
INTEGER index(MQ) ,nprob(MQ)

Used by hufmak to maintain a heap structure in the array index(1:1).

INTEGER 1i,j,k,n

n=m

i=1

k=index (i)

if(i.le.n/2)then
j=i+i

if (j.1t.n.and.nprob(index(j)).gt.nprob(index(j+1))) j=j+1
if (nprob(k).le.nprob(index(j))) goto 3

index(i)=index(j)
i=]

goto 2

endif

index (i)=k

return

END
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900 Chapter 20.  Less-Numerical Algorithms

Once the code is constructed, one encodes a string of characters by repeated
calls tohufenc, which simply does a table lookup of the code and appends it to

the output message.

SUBROUTINE hufenc(ich,code,lcode,nb)

INTEGER ich,lcode,nb,MC,MQ

PARAMETER (MC=512,MQ=2%MC-1)
Huffman encode the single character ich (in the range 0. .nch-1), write the result to the
character array code(1:1code) starting at bit nb (whose smallest valid value is zero),
and increment nb appropriately. This routine is called repeatedly to encode consecutive
characters in a message, but must be preceded by a single initializing call to hufmak.

INTEGER k,1l,n,nc,nch,nodemx,ntmp,ibset

INTEGER icod(MQ),left(MQ),iright(MQ),ncod(MQ) ,nprob(MQ)

LOGICAL btest

CHARACTER*1 code(*)

COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx

SAVE /hufcom/

k=ich+1 Convert character range 0. .nch-1 to array index range 1. .nch.
if(k.gt.nch.or.k.1lt.1)pause ’ich out of range in hufenc.’
do 11 n=ncod(k),1,-1 Loop over the bits in the stored Huffman code for ich.
nc=nb/8+1
if (nc.gt.lcode) pause ’lcode too small in hufenc.’
1=mod(nb,8)

if (1.eq.0) code(nc)=char(0)
if (btest(icod(k),n-1))then Set appropriate bits in code.
ntmp=ibset (ichar(code(nc)),1)
code (nc)=char (ntmp)
endif
nb=nb+1
enddo 11
return
END

Decoding a Huffman-encoded message is slightly more complicated. Th
coding tree must be traversed from the top down, using up a variable number of bits

SUBROUTINE hufdec(ich,code,lcode,nb)

INTEGER ich,lcode,nb,MC,MQ

PARAMETER (MC=512,MQ=2%MC-1)
Starting at bit number nb in the character array code(1:1code), use the Huffman code
stored in common block /hufcom/ to decode a single character (returned as ich in the
range 0..nch-1) and increment nb appropriately. Repeated calls, starting with nb = 0
will return successive characters in a compressed message. The returned value ich=nch
indicates end-of-message. This routine must be preceded by a single initializing call to
hufmak.
Parameters: MC is the maximum value of nch, the input alphabet size.

INTEGER 1,nc,nch,node,nodemx

INTEGER icod(MQ),left(MQ),iright(MQ),ncod(MQ) ,nprob(MQ)

LOGICAL btest

CHARACTER#*1 code(lcode)

COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx

SAVE /hufcom/

node=nodemx Set node to the top of the decoding tree.
continue Loop until a valid character is obtained.
nc=nb/8+1
if (nc.gt.lcode)then Ran out of input; with ich=nch indicating end of message.
ich=nch
return
endif
1=mod (nb,8) Now decoding this bit.

nb=nb+1
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if (btest(ichar(code(nc)),1))then Branch left or right in tree, depending on its
node=iright (node) value.
else
node=left (node)
endif
if (node.le.nch)then If we reach a terminal node, we have a complete character
ich=node-1 and can return.
return
endif
goto 1
END

For simplicity, hufdec quits when it runs out of code bytes; if your coded
message is not an integral number of bytes, adjf is less than 256 yufdec can
return a spurious final character or two, decoded from the spurious trailing bits in
your last code byte. If you have independent knowledge of the number of character
sent, you can readily discard these. Otherwise, you can fix this behavior by providin
a bit, not byte, count, and modifying the routine accordingly. (When is 256 or
larger,hufdec will normally run out of code in the middle of a spurious character,
and it will be discarded.)

-T (129 4O WO U MMM//:dny
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Run-Length Encoding
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For the compression of highly correlated bit-streams (for example the black or3
white values along a facsimile scan line), Huffman compression is often combined
with run-lengthencoding: Instead of sending each bit, the input stream is converted to
a series of integers indicating how many consecutive bits have the same value. The
integers are then Huffman-compressed. The Group 3 CCITT facsimile standar
functions in this manner, with a fixed, immutable, Huffman code, optimized for a
set of eight standard documei®].
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20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would useL; = —log, p; bits to encode charactér(in the rangel < i < N.p),
if p; is its probability of occurrence. Huffman coding gives a way of rounding the
L;’s to close integer values and constructing a code with those lengtithmetic =
coding [11, which we now discuss, actually does manage to encode characters using
noninteger numbers of bits! It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbols in any desired radix. This latte;
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent alphanumeri&
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a re
numberR in the rangel < R < 1. The longer the message, the more precision
required ofR. This is best illustrated by an example, so let us return to the fictitious *
language, Vowellish, of the previous section. Recall that Vowellish has a 5 characte
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 shows how a message beginning “IOU” is encoded
The interval[0,1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the correspondingVe see that the first
message character, “I”, narrows the rangd&db 0.37 < R < 0.46. This interval is
now subdivided into five subintervals, again with lengths proportional tp tise The
second message character, “O”, narrows the rande @f0.3763 < R < 0.4033.

The “U” character further narrows the rangeit87630 < R < 0.37819. Any value

of R in this range can be sent as encoding “IOU". In particular, the binary fraction
.011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, s€§20.4.)

Of course there is the problem of knowing when to stop decoding. The fraction
.011000001 represents not simply “IOU,” but “IOU . ,” where the ellipses represent
an infinite string of successor characters. To resolve this ambiguity, arithmetic
coding generally assumes the existence of a spé€ial + 1th character, EOM
(end of message), which occurs only once at the end of the input. Since EO
has a low probability of occurrence, it gets allocated only a very tiny piece of
the number line.

In the above example, we gaveas a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenie
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required ofR for a long message. The answer is tRat never actually represented
all at once. At any give stage we have upper and lower bound® i@presented
as a finite number of digits in the output radix. As digits of the upper and lower *
bounds become identical, we can left-shift them away and bring in new digits at the
low-significance end. The routines below have a paramwatierfor the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs.) Since the process of discarding old digits and bringing in new ones is
performed identically on encoding and decoding, everything stays synchronized.
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